C¶
Main solver API¶
The main C API is imported from the header osqp.h
and provides the following functions
-
c_int osqp_setup(OSQPWorkspace **workp, const OSQPData *data, const OSQPSettings *settings)¶
Initialize OSQP solver allocating memory.
All the inputs must be already allocated in memory before calling.
It performs:
data and settings validation
problem data scaling
automatic parameters tuning (if enabled)
setup linear system solver:
direct solver: KKT matrix factorization is performed here
indirect solver: KKT matrix preconditioning is performed here
NB: This is the only function that allocates dynamic memory and is not used during code generation
- Parameters
workp – Solver workspace pointer
data – Problem data
settings – Solver settings
- Returns
Exitflag for errors (0 if no errors)
-
c_int osqp_solve(OSQPWorkspace *work)¶
Solve quadratic program
The final solver information is stored in the work->info structure
The solution is stored in the work->solution structure
If the problem is primal infeasible, the certificate is stored in work->delta_y
If the problem is dual infeasible, the certificate is stored in work->delta_x
- Parameters
work – Workspace allocated
- Returns
Exitflag for errors
-
c_int osqp_cleanup(OSQPWorkspace *work)¶
Cleanup workspace by deallocating memory
This function is not used in code generation
- Parameters
work – Workspace
- Returns
Exitflag for errors
Sublevel API¶
Sublevel C API is also imported from the header osqp.h
and provides the following functions
Warm start¶
OSQP automatically warm starts primal and dual variables from the previous QP solution. If you would like to warm start their values manually, you can use
-
c_int osqp_warm_start(OSQPWorkspace *work, const c_float *x, const c_float *y)¶
Warm start primal and dual variables
- Parameters
work – Workspace structure
x – Primal variable
y – Dual variable
- Returns
Exitflag
-
c_int osqp_warm_start_x(OSQPWorkspace *work, const c_float *x)¶
Warm start primal variable
- Parameters
work – Workspace structure
x – Primal variable
- Returns
Exitflag
-
c_int osqp_warm_start_y(OSQPWorkspace *work, const c_float *y)¶
Warm start dual variable
- Parameters
work – Workspace structure
y – Dual variable
- Returns
Exitflag
Update problem data¶
Problem data can be updated without executing the setup again using the following functions.
-
c_int osqp_update_lin_cost(OSQPWorkspace *work, const c_float *q_new)¶
Update linear cost in the problem
- Parameters
work – Workspace
q_new – New linear cost
- Returns
Exitflag for errors and warnings
-
c_int osqp_update_lower_bound(OSQPWorkspace *work, const c_float *l_new)¶
Update lower bound in the problem constraints
- Parameters
work – Workspace
l_new – New lower bound
- Returns
Exitflag: 1 if new lower bound is not <= than upper bound
-
c_int osqp_update_upper_bound(OSQPWorkspace *work, const c_float *u_new)¶
Update upper bound in the problem constraints
- Parameters
work – Workspace
u_new – New upper bound
- Returns
Exitflag: 1 if new upper bound is not >= than lower bound
-
c_int osqp_update_bounds(OSQPWorkspace *work, const c_float *l_new, const c_float *u_new)¶
Update lower and upper bounds in the problem constraints
- Parameters
work – Workspace
l_new – New lower bound
u_new – New upper bound
- Returns
Exitflag: 1 if new lower bound is not <= than new upper bound
-
c_int osqp_update_P(OSQPWorkspace *work, const c_float *Px_new, const c_int *Px_new_idx, c_int P_new_n)¶
Update elements of matrix P (upper triangular) without changing sparsity structure.
If Px_new_idx is OSQP_NULL, Px_new is assumed to be as long as P->x and the whole P->x is replaced.
- Parameters
work – Workspace structure
Px_new – Vector of new elements in P->x (upper triangular)
Px_new_idx – Index mapping new elements to positions in P->x
P_new_n – Number of new elements to be changed
- Returns
output flag: 0: OK 1: P_new_n > nnzP <0: error in the update
-
c_int osqp_update_A(OSQPWorkspace *work, const c_float *Ax_new, const c_int *Ax_new_idx, c_int A_new_n)¶
Update elements of matrix A without changing sparsity structure.
If Ax_new_idx is OSQP_NULL, Ax_new is assumed to be as long as A->x and the whole A->x is replaced.
- Parameters
work – Workspace structure
Ax_new – Vector of new elements in A->x
Ax_new_idx – Index mapping new elements to positions in A->x
A_new_n – Number of new elements to be changed
- Returns
output flag: 0: OK 1: A_new_n > nnzA <0: error in the update
-
c_int osqp_update_P_A(OSQPWorkspace *work, const c_float *Px_new, const c_int *Px_new_idx, c_int P_new_n, const c_float *Ax_new, const c_int *Ax_new_idx, c_int A_new_n)¶
Update elements of matrix P (upper triangular) and elements of matrix A without changing sparsity structure.
If Px_new_idx is OSQP_NULL, Px_new is assumed to be as long as P->x and the whole P->x is replaced.
If Ax_new_idx is OSQP_NULL, Ax_new is assumed to be as long as A->x and the whole A->x is replaced.
- Parameters
work – Workspace structure
Px_new – Vector of new elements in P->x (upper triangular)
Px_new_idx – Index mapping new elements to positions in P->x
P_new_n – Number of new elements to be changed
Ax_new – Vector of new elements in A->x
Ax_new_idx – Index mapping new elements to positions in A->x
A_new_n – Number of new elements to be changed
- Returns
output flag: 0: OK 1: P_new_n > nnzP 2: A_new_n > nnzA <0: error in the update
Data types¶
The most basic used datatypes are
c_int
: can belong
orint
if the compiler flagDLONG
is set or notc_float
: can be afloat
or adouble
if the compiler flagDFLOAT
is set or not.
The relevant structures used in the API are
Data¶
-
struct OSQPData¶
Data structure
The matrices are defined in Compressed Sparse Column (CSC) format using zero-based indexing.
-
struct csc¶
Matrix in compressed-column form. The structure is used internally to store matrices in the triplet form as well, but the API requires that the matrices are in the CSC format.
Public Members
-
c_int nzmax¶
maximum number of entries
-
c_int m¶
number of rows
-
c_int n¶
number of columns
-
c_int *p¶
column pointers (size n+1); col indices (size nzmax) start from 0 when using triplet format (direct KKT matrix formation)
-
c_int *i¶
row indices, size nzmax starting from 0
-
c_float *x¶
numerical values, size nzmax
-
c_int nz¶
number of entries in triplet matrix, -1 for csc
-
c_int nzmax¶
Settings¶
-
struct OSQPSettings¶
Settings struct
Public Members
-
c_float rho¶
ADMM step rho.
-
c_float sigma¶
ADMM step sigma.
-
c_int scaling¶
heuristic data scaling iterations; if 0, then disabled.
-
c_int adaptive_rho¶
boolean, is rho step size adaptive?
-
c_int adaptive_rho_interval¶
number of iterations between rho adaptations; if 0, then it is automatic
-
c_float adaptive_rho_tolerance¶
tolerance X for adapting rho. The new rho has to be X times larger or 1/X times smaller than the current one to trigger a new factorization.
-
c_float adaptive_rho_fraction¶
interval for adapting rho (fraction of the setup time)
-
c_int max_iter¶
maximum number of iterations
-
c_float eps_abs¶
absolute convergence tolerance
-
c_float eps_rel¶
relative convergence tolerance
-
c_float eps_prim_inf¶
primal infeasibility tolerance
-
c_float eps_dual_inf¶
dual infeasibility tolerance
-
c_float alpha¶
relaxation parameter
-
enum linsys_solver_type linsys_solver¶
linear system solver to use
-
c_float delta¶
regularization parameter for polishing
-
c_int polish¶
boolean, polish ADMM solution
-
c_int polish_refine_iter¶
number of iterative refinement steps in polishing
-
c_int verbose¶
boolean, write out progress
-
c_int scaled_termination¶
boolean, use scaled termination criteria
-
c_int check_termination¶
integer, check termination interval; if 0, then termination checking is disabled
-
c_int warm_start¶
boolean, warm start
-
c_float time_limit¶
maximum number of seconds allowed to solve the problem; if 0, then disabled
-
c_float rho¶
Solution¶
-
struct OSQPSolution¶
Solution structure
Info¶
-
struct OSQPInfo¶
Solver return information
Public Members
-
c_int iter¶
number of iterations taken
-
char status[32]¶
status string, e.g. ‘solved’
-
c_int status_val¶
status as c_int, defined in constants.h
-
c_int status_polish¶
polish status: successful (1), unperformed (0), (-1) unsuccessful
-
c_float obj_val¶
primal objective
-
c_float pri_res¶
norm of primal residual
-
c_float dua_res¶
norm of dual residual
-
c_float setup_time¶
time taken for setup phase (seconds)
-
c_float solve_time¶
time taken for solve phase (seconds)
-
c_float update_time¶
time taken for update phase (seconds)
-
c_float polish_time¶
time taken for polish phase (seconds)
-
c_float run_time¶
total time (seconds)
-
c_int rho_updates¶
number of rho updates
-
c_float rho_estimate¶
best rho estimate so far from residuals
-
c_int iter¶
Workspace¶
-
struct OSQPWorkspace¶
OSQP Workspace
Vector used to store a vectorized rho parameter
-
c_float *rho_vec¶
vector of rho values
-
c_float *rho_inv_vec¶
vector of inv rho values
Iterates
-
c_float *x¶
Iterate x.
-
c_float *y¶
Iterate y.
-
c_float *z¶
Iterate z.
-
c_float *xz_tilde¶
Iterate xz_tilde.
-
c_float *x_prev¶
Previous x.
NB: Used also as workspace vector for dual residual
-
c_float *z_prev¶
Previous z.
NB: Used also as workspace vector for primal residual
Primal and dual residuals workspace variables
Needed for residuals computation, tolerances computation, approximate tolerances computation and adapting rho
-
c_float *Ax¶
scaled A * x
-
c_float *Px¶
scaled P * x
-
c_float *Aty¶
scaled A’ * y
Primal infeasibility variables
-
c_float *delta_y¶
difference between consecutive dual iterates
-
c_float *Atdelta_y¶
A’ * delta_y.
Dual infeasibility variables
-
c_float *delta_x¶
difference between consecutive primal iterates
-
c_float *Pdelta_x¶
P * delta_x.
-
c_float *Adelta_x¶
A * delta_x.
Temporary vectors used in scaling
-
c_float *D_temp¶
temporary primal variable scaling vectors
-
c_float *D_temp_A¶
temporary primal variable scaling vectors storing norms of A columns
-
c_float *E_temp¶
temporary constraints scaling vectors storing norms of A’ columns
Public Members
-
LinSysSolver *linsys_solver¶
Linear System solver structure.
-
OSQPPolish *pol¶
Polish structure.
-
c_int *constr_type¶
Type of constraints: loose (-1), equality (1), inequality (0)
-
OSQPSettings *settings¶
problem settings
-
OSQPScaling *scaling¶
scaling vectors
-
OSQPSolution *solution¶
problem solution
-
OSQPTimer *timer¶
timer object
-
c_int first_run¶
flag indicating whether the solve function has been run before
-
c_int clear_update_time¶
flag indicating whether the update_time should be cleared
-
c_int rho_update_from_solve¶
flag indicating that osqp_update_rho is called from osqp_solve function
-
c_int summary_printed¶
Has last summary been printed? (true/false)
-
c_float *rho_vec¶
Scaling¶
-
struct OSQPScaling¶
Problem scaling matrices stored as vectors
Polish¶
-
struct OSQPPolish¶
Polish structure
Public Members
-
c_int n_low¶
number of lower-active rows
-
c_int n_upp¶
number of upper-active rows
-
c_int *A_to_Alow¶
Maps indices in A to indices in Alow.
-
c_int *A_to_Aupp¶
Maps indices in A to indices in Aupp.
-
c_int *Alow_to_A¶
Maps indices in Alow to indices in A.
-
c_int *Aupp_to_A¶
Maps indices in Aupp to indices in A.
-
c_float *x¶
optimal x-solution obtained by polish
-
c_float *z¶
optimal z-solution obtained by polish
-
c_float *y¶
optimal y-solution obtained by polish
-
c_float obj_val¶
objective value at polished solution
-
c_float pri_res¶
primal residual at polished solution
-
c_float dua_res¶
dual residual at polished solution
-
c_int n_low¶